
Chapter Five

Path Making Facility: Technical Details

Introduction

This chapter contains details about the design of the paths facility. The
structures containing the path’s information and the reasons behind design
decisions are offered. Problems encountered during the design, and the
implemented solutions, are discussed. The use of the History list is discussed and
it’s use in creating new paths is described. Problems concerning HyperCard’s
limitations and how they affect the paths facility are described. Finally, the
problem of maintaining path integrity, and the lack of this feature in the paths
facility, is discussed.



Chapter Five Path Making Facility: Technical Details 2

Path Structures

Each path is stored on one HyperCard card. The name of the card is the
name of the path. There are three fields on each card — one contains the path
information, one contains the meta-information and one contains the history list.

Figure 5.1 Path card showing the path information and the meta-information

Path Data

In the paths facility, the following data is required in order to navigate the
system.

• Card identification

• Stack name

This information is stored on one line of the field. Each line represents one
node and many lines of this information make up the path. The links can be from
one card in a stack to any other card in any other stack. Each card will be
uniquely identified by its ID number (which is produced by HyperCard itself)



Chapter Five Path Making Facility: Technical Details 3

within a stack. Using the name of the card was considered but this was rejected
due to the fact that it would not be unique to a stack, and it also required the
stack authors to name the cards which does not always happen. So in order to be
unintrusive, the card identification number was used to uniquely identify a card
in a stack. Using the card identification number is also much faster in searching
than using the card name. Of course, the stack name is also required to uniquely
identify the card within the system (all the stacks available). In a networked
version, some location information would also need to be stored.

Figure 5.2 Path card showing the History List.

Meta-information Structure

The meta-information is stored in a separate field and is structured like
this:

Delimiter
Meta-information for node 1
Delimiter
Meta-information for node 2
Delimiter
…



Chapter Five Path Making Facility: Technical Details 4

Meta-information for node n
Delimiter

Delimiters are on separate lines by themselves. The delimiter that has been
used is ‘EndNode’. Using a whole word rather than a specific character was
implemented because any character might be used in the meta-information itself,
so using a whole word reduced the possibility of confusing the delimiter with the
meta-information. Thus the meta-information may contain blank lines and any
characters at all — the only restriction is that it may not contain the delimiter on
a separate line by itself, although the delimiter may be used within a line and will
then not be recognised as such.

History List

When a user is exploring, their path history is automatically stored. This
history is saved only when the path is saved. Their path history is their linear
trail through the system over time. So that includes nodes that were visited off
the path as well as ones that were visited on it. The history list can be used to
navigate also — any of the nodes on the list are selectable so a node can be re-
visited just by selecting one of the lines in the list.

The data stored on each line of the history list is as follows:

Card identification

Stack name

Time of visit

Length of visit

As in the path field, the card identification number and the stack name are
required in order to identify the card. The time of visit is stored for contextual
purposes — perhaps to see when a particular card was last visited. The length of
the visit is the amount of time in seconds that a particular card was viewed.

The length of visit might be used in a number of ways. Firstly as a
contextual clue — it can be seen whether or not a card was examined in detail
and perhaps gain a clue as to its interest level. Secondly, this length of visit data
could be used as a criterion in creating a new path from the history data. As a
basic assumption, it could be said that the length of time that a card is attended to
corresponds in some way to its interest level. Thus, one quick and easy way of



Chapter Five Path Making Facility: Technical Details 5

creating a new path would be to filter the history list using the length of visit data
as the criterion.

Using the history list to quickly create a path has been implemented. On
each path card there is the path field, the meta-information field and the history
field. There is also a button called ‘History to Path’. Clicking on this button will
enable a new path card to be created using the current card’s history list as a
base.

Creating a New Path from the History List

To create a new path from the History List, select the ‘History to Path’
button on the path card whose history list is going to be used. The threshold
value will then be asked for. The threshold value is the cutoff value (in seconds)
for adding a card from the history list to the new path. With each history is the
length of time that a particular card has been visited and if this is greater than or
equal to the Threshold value then it will be added to the new path.

Figure 5.3 Enter the threshold value dialog

When all the cards on the history list have been examined, if some of them
have been added to the new path, then a name will be required for the new path.
A name should be entered describing the new path as in Figure 4.5 (or it can be
named later — it is the name of the card), and a new card will be created with the
path field filled with the cards satisfying the threshold criterion. The meta-
information field will also be ready to accept new meta-information.



Chapter Five Path Making Facility: Technical Details 6

Problems Encountered & Solutions

While it would have been possible to store all the information on one field,
it is a better breakdown by functionality to store the meta-information separate
from the path information. The meta-information, while important, is a separate
entity from the path itself. Having it separate also assists in lessening the effects
of HyperCard’s limitations. More specifically, HyperCard limits the amount of
text in a field to 30000 characters. So the length of a path, as well as the amount
of meta-information, is limited by this. The meta-information is more likely to
come up against this limitation.

The history list might also come up against this limitation. If a user
interacts with the system for a long time and covers many nodes then the history
list will get very large. For example, assume each node in the history list takes up
50 characters:

card id — 5 chars

stack name — 25 chars

time — 10 chars (max.)

length of visit — 10 chars (max.)

This means that a maximum of 640 nodes may be added to the history list.
Of course this is highly dependent on the stacks that are visited — if the average
stack name was only 15 characters long then the number of nodes that could be
visited before reaching the limit would be 800. Another way of reducing the size
of the history list would be not to store the time of the visit. This does not seem
to be particularly helpful unless a user comes back at a later time and can see
when a node was last accessed [Utting, 1989a]. Perhaps this information should
be stored in the path itself and could then be displayed on the path palette.

Storing the meta-information separate from the path information does
complicate processing somewhat, especially when modifying a path, as it results
in two areas that need to be searched before modification can occur. In a
different implementation the information for each node might be stored together
to ease processing and make it more functional. By storing all the information
for a node on a path together, modification of the path would become easier.
This would make a graphical tool to manipulate the path simpler to develop. It



Chapter Five Path Making Facility: Technical Details 7

would also enable the extension of the path tool to encompass more types of
documents rather than just HyperCard stacks and cards. Conceivably the path
tool could be made generic and different types of documents (for example,
graphics, movies, text, sounds) could be linked. Then each document could be
opened with its own application with the meta-information being available as a
side-note in a separate window.

Integrity

There is currently no control over the deletion of cards and stacks or the
movement of stacks to different locations. There is no way of ensuring that a
node in a path is actually there. If a stack is moved to a folder that is not in the
HyperCard search path then the stack will not be found and the user must locate
it in the system. Similarly, if a card is deleted then all the paths that it belongs to
will not be updated to reflect the change. What happens is that when the non-
existent card is the current card, the system will report that the particular card
does not exist any more. This can be a problem for novice users if they are not
familiar with the Macintosh file system. If they are asked to find a stack then
they may not know what to do. This needs some sort of attention and probably
would be best addressed at the system level in a similar manner to the IRIS
Hypermedia Services. That is where the system itself provides basic support for
nodes and linking and manages them relatively seamlessly, so that the integrity
of the system components is maintained without additional effort being required
from users of the system.


